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Abstract—We point out a problem inherent in the optimiza-
tion scheme of many popular feature selection methods. It fol-
lows from the implicit assumption that higher feature selection
criterion value always indicates more preferable subset even
if the value difference is marginal. This assumption ignores
the reliability issues of particular feature preferences, over-
fitting and feature acquisition cost. We propose an algorithmic
extension applicable to many standard feature selection meth-
ods allowing better control over feature subset preference. We
show experimentally that the proposed mechanism is capable
of reducing the size of selected subsets as well as improving
classifier generalization.

Keywords-feature selection, machine learning, over-fitting,
classification, feature weights, weighted features, feature ac-
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I. INTRODUCTION

In feature selection (FS) the search problem of finding a
subset of d features from the given set of D measurements,
d < D, so as to optimize a chosen criterion [3] has been
of interest for a long time. The aim of FS is to reduce
data acquisition cost and/or improve pattern recognition
performance.

In FS algorithm design it is generally assumed that any
improvement in the criterion value leads to better feature
subset. Nevertheless, this principle has been challenged
[10]–[12] showing that the strict application of this rule may
easily lead to overfitting and consequently to poor gener-
alization performance even with the best available feature
subset evaluation schemes. Unfortunately, there seems to
be no way of defining FS criteria capable of avoiding this
problem in general. In this paper we present an alternative
workaround targeted specifically at improving the robustness
of decisions about feature inclusion/removal in the course of
feature subset search.

A. Common Process of Criterion Maximization

Following the common paradigm we assume that higher
criterion value is meant to depict better subset. Many com-
mon sub-optimal FS algorithms can be viewed as generators
of a sequence of candidate feature subsets and respective

Figure 1. Feature selection algorithms can be viewed as black box
procedures generating a sequence of candidate subsets with respective
criterion values, among which intermediate solutions are chosen.

criterion values (see Fig. 1). Intermediate solutions are usu-
ally selected among the candidate subsets as the ones with
the highest criterion value discovered so far. Intermediate
solutions are used to further guide the search. The solution
with the highest overall citerion value is eventually consid-
ered to be the result. In the course of search the candidate
feature subsets may yield fluctuating criterion values while
the criterion values of intermediate solutions usually form
a nondecreasing sequence. The search generally continues
as long as intermediate solutions improve, no matter how
significant the improvement is and often without respect
to other effects like excessive subset size increase. This
type of scheme is followed by various sequential search
algorithms [3], [9], genetic algorithms [6], simulated anneal-
ing [4] or tabu search [15], etc.

B. The Problem of Fragile Feature Preference

In many FS tasks it can be observed that the difference
between criterion values of successive intermediate solutions
decreases in time and often becomes negligible. Yet minimal
change in criterion value may be accompanied by substantial
changes in subset contents. This can easily happen, e.g.,
when many of the considered features are important but
redundant to various degrees with respect to the chosen
criterion, or when there is large number of features carrying
limited but nonzero information (this is common, e.g., in text
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Figure 2. In many FS tasks very low criterion increase is accompanied
by fluctuations in selected subsets; both in size and contents

categorization [13]). We illustrate this phenomenon in Fig. 2,
showing the process of selecting features on spambase
data [1] using SFFS algorithm [9] and estimated classifi-
cation accuracy of Support Vector Machine (SVM, [2]) as
criterion [8]. Considering only those tested subset candidates
with criterion values within 1% difference from the final
maximum achieved value, i.e., values from [0.926, 0.936],
their sizes fluctuate from 8 to 17. This sequence of candidate
subsets yields average Tanimoto distance SS [7] as low as
0.551 on the scale [0, 1] (where 0 marks disjunct sets and 1
marks identical sets). This suggests that roughly any two of
these subsets differ almost in half of their contents. Clearly,
notable fluctuations in feature subset contents following
from minor criterion value improvement are unlikely to
lead to reliable final classification system. Correspondingly,
Raudys [10] argues that to prevent overfitting it may be
better to consider as FS result a subset with slightly lower
than the best achieved criterion value.

II. TACKLING THE PROBLEM OF FRAGILE FEATURE

SUBSET PREFERENCES

Following the observations above, we propose to treat
as equal (effectively indistinguishable) all subsets known
to yield criterion value within a pre-defined (very small)
distance from the maximum known at the current algo-
rithm stage. Intermediate solutions then need to be selected
from the treated-as-equal subset groups using a suitable
secondary criterion. A good secondary criterion should be
able to compensate for the primary criterion’s deficiency in
distinguishing among treated-as-equal subsets. Nevertheless,
introducing the secondary criterion opens up alternative
usage options as well, see Sect. II-B.

The idea of the secondary criterion is analogous to the
principle of penalty functions as used, e.g., in two-part
objective function consisting of goodness-of-fit and number-
of-variables parts [5]. However, in our approach we propose
to keep the evaluation of primary and secondary criteria
separated. Avoiding the combination of two criteria into one
objective function is advantageous as it a) avoids the prob-
lem of finding reasonable combination parameters (weights)

of potentially incompatible objective function parts and
b) enables to use the secondary criterion as supplement
only in cases when the primary criterion response is not
decisive enough. Remark: The advantage of separate criteria
evaluation comes at the cost of necessity to specify which
subset candidates are to be treated as equal, i.e., to set a
threshold depending on the primary criterion. This, however,
is transparent to define (see below) and, when compared to
two-part objective functions, allows for finer control of the
FS process.

A. Secondary Criterion Evaluation Mechanism

Let J1(·) denote the primary FS criterion to be maxi-
mized by the chosen FS algorithm. Let J2(·) denote the
secondary FS criterion for resolving the "treated-as-equal"
cases. Let λ ∈ [0, 1] denote the equality threshold parameter.
Throughout the course of search two pivot subsets, Xmax

and Xsel, are to be updated after each criterion evaluation.
Let Xmax denote the subset yielding the maximum J1 value
known so far. Let Xsel denote the currently selected subset
(intermediate solution). When the search process ends, Xsel

is to become the final solution.
The chosen backbone FS algorithm is used in its stan-

dard way to maximize J1. It is the mechanism proposed
below that simultaneously keeps selecting an intermediate
result Xsel among the currently known "treated-as-equal"
alternatives to the current Xmax, allowing Xsel �= Xmax if
Xsel is better than Xmax with respect to J2 while being
only negligibly worse with respect to J1, i.e., provided
J1(Xsel) ≥ (1 − λ) · J1(Xmax) ∧ J2(Xsel) > J2(Xmax).

FS Algorithm Extension
Whenever the backbone FS algorithm evaluates a feature
subset X (depicting any subset evaluated at any algorithm
stage), the following update sequence is to be called:

if J1(X) > J1(Xmax) then
make X the new Xmax

{now the current Xsel may not be valid any more}
if J1(Xsel) < (1 − λ) · J1(Xmax)
or J2(Xsel) ≤ J2(Xmax) then

make X also the new Xsel

end if
else {X still may be better than the current Xsel}

if
(
J1(X) ≥ (1−λ)·J1(Xmax) and J2(X) > J2(Xsel)

)

or
(
J2(X) = J2(Xsel) and J1(X) > J1(Xsel)

)
then

make X the new Xsel

end if
end if

The proposed mechanism does not affect the course of
search of the primary FS algorithm; it only adds a form of
lazy solution update. Note that the presented mechanism is
applicable with a large class of FS algorithms (cf. Sect I-A).
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Table I
RESULTS – LOWER-DIMENSIONAL DATA [Dimensionality](No. of classes, No. of all samples) – CLASSIFIER ACCURACY FOR VARIOUS λ, SFFS

SFFS dermatol. [D=34] (6, 358) spectf [D=44] (2, 267) wdbc [D=30] (2, 569) spambase [D=57] (2, 4601)
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SV
M

R
B

F

0 8 .977 .917 2 .827 .761 7 .943 .923 16 .937 .883
0.001 dtto dtto dtto dtto dtto dtto dtto dtto dtto dtto dtto dtto

0.005 dtto dtto dtto dtto dtto dtto 5 .940 .923 • 10 .934 .879
0.01 dtto dtto dtto dtto dtto dtto 4 .936 .926 • 9 .930 .884
0.02 7 .966 .922 • dtto dtto dtto 2 .926 .912 8 .921 .870
0.03 6 .955 .922 • dtto dtto dtto dtto dtto dtto 6 .912 .872
0.04 5 .944 .933 • 1 .797 .791 • dtto dtto dtto 5 .904 .871
0.05 dtto dtto dtto dtto dtto dtto 2 .919 .919 4 .896 .866

3N
N

0 16 .994 .933 11 .948 .769 5 .954 .937 30 .930 .871
0.001 dtto dtto dtto dtto dtto dtto dtto dtto dtto 24 .930 .872 •
0.005 dtto dtto dtto dtto dtto dtto 3 .951 .937 • 20 .926 .871 •
0.01 dtto dtto dtto dtto dtto dtto dtto dtto dtto 18 .923 .876 •
0.02 6 .983 .950 • dtto dtto dtto 2 .937 .930 14 .913 .867
0.03 5 .966 .939 • 7 .925 .776 • dtto dtto dtto 9 .905 .856
0.04 dtto dtto dtto dtto dtto dtto dtto dtto dtto 8 .896 .828
0.05 dtto dtto dtto 6 .910 .716 1 .912 .881 7 .887 .807

B. Secondary Criterion Usage Options

The J2 criterion can be utilized for various purposes.
Depending on particular problem it may be possible to
define J2 to distinguish better among subsets that J1 fails
to distinguish reasonably enough.

The simplest yet useful alternative is to utilize J2 for
emphasising the preference of smaller subsets. To achieve
this, J2 is to be defined as J2(X) = −|X|. Smaller
subsets not only mean lower measurement cost, but more
importantly in many problems the forced reduction of subset
size may help to remove features that over-fit, what conse-
quently leads to better generalization (see Section III). More
generally, J2 can be used to incorporate feature acquisition
cost minimization into the FS process. Provided a weight
(cost) wi, i = 1, . . . , D is known for each feature, then
the appropriate secondary criterion can be easily defined as
J2(X) = −∑

xi∈X wi.

III. APPLIED EXAMPLE

We illustrate the potential of the proposed methodology on
a series of experiments where J2 was used for emphasising
the preference of smaller subsets (see Sect. II-B). For this
purpose we used several data-sets from UCI repository [1]
and one data-set – xpxinsar satellite – from Salzburg Uni-
versity. Table I collects results obtained using the extended
version (see Sect. II) of the Sequential Forward Floating
Search (SFFS, [9]). Table II collects results obtained using
the extended version (see Sect. II) of the Dynamic Oscil-
lating Search (DOS, [14]). Both methods have been used in
wrapper setting [8], i.e., with estimated classifier accuracy as
FS criterion. For this purpose we have used Support Vector
Machine (SVM) with Radial Basis Function kernel [2]

and 3-Nearest Neighbor classifier accuracy estimates. To
estimate final classifier accuracy on independent data we
split each dataset to equally sized parts; the training part was
used in 3-fold Cross-Validation manner to evaluate wrapper
criteria in the course of FS process, the testing part was used
only once for independent classification accuracy estimation.

We repeated each experiment for different equality thresh-
olds λ, ranging from 0.001 to 0.05 (note that due to the
wrapper setting both considered criteria yield values from
[0, 1]). Tables I and II show the impact of changing equality
threshold to classifier accuracy on independent data. First
row (λ = 0) equals standard FS algorithm operation without
the extension proposed in this paper. By black bullets we
emphasize cases where the proposed mechanism led to
improvement, i.e., the selected subset size has been reduced
with better or equal accuracy on independent test data.
Note that positive effect of nonzero λ can be observed
in significant number of cases. Note in particular that in
many cases the number of features could be reduced to less
than one half of what would be the standard FS method’s
result (cf. in Table I the dermatology–3NN case and in
Table II the gisette–SVM, xpxinsar–SVM, spambase–SVM
and madelon–3NN cases). However, it can be also seen that
the effect is strongly case dependent. It is hardly possible to
give general recommendation about suitable λ value, except
that improvements in some of our experiments have been
observed for various λ values up to roughly 0.1.

IV. CONCLUSION

We have pointed out a problem of feature subset pref-
erence fragility (over-emphasized importance of negligible
criterion value increase) as one of factors that make many
FS methods more prone to over-fitting. We propose an
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Table II
RESULTS – HIGHER-DIMENSIONAL DATA [Dimensionality](No. of classes, No. of all samples) – CLASSIFIER ACCURACY FOR VARIOUS λ, DOS(Δ = 15)

DOS(15) gisette [D=5000](2, 1000) madelon [D=500](2, 2000) xpxinsar [D=57](7, 1721) spambase [D=57] (2, 4601)
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R
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F

0 10 .922 .856 21 .841 .804 12 .873 .863 16 .930 .873
0.001 9 .921 .860 • dtto dtto dtto dtto dtto dtto 11 .929 .877 •
0.005 7 .918 .862 • 17 .837 .817 • 9 .871 .867 • 8 .927 .878 •
0.01 5 .914 .854 15 .833 .812 • 7 .866 .897 • dtto dtto dtto

0.02 3 .906 .852 13 .825 .816 • 6 .864 .896 • 6 .915 .877 •
0.03 dtto dtto dtto dtto dtto dtto 5 .856 .871 • 5 .905 .873 •
0.04 2 .890 .856 • 12 .811 .793 4 .840 .845 4 .896 .866
0.05 dtto dtto dtto dtto dtto dtto dtto dtto dtto dtto dtto dtto

3N
N

0 15 .958 .904 18 .891 .844 16 .847 .854 36 .930 .859
0.001 dtto dtto dtto dtto dtto dtto 14 .847 .854 • 32 .929 .858
0.005 13 .954 .898 13 .888 .842 12 .844 .848 23 .926 .868 •
0.01 11 .950 .892 9 .883 .850 • 10 .840 .847 21 .922 .869 •
0.02 8 .940 .892 7 .877 .848 • 9 .837 .825 14 .913 .866 •
0.03 6 .930 .874 6 .869 .847 • 5 .823 .842 12 .907 .836
0.04 5 .922 .89 5 .858 .854 • dtto dtto dtto dtto dtto dtto

0.05 4 .914 .87 dtto dtto dtto 4 .812 .837 8 .892 .836

algorithmic workaround applicable with many standard FS
methods. Moreover, the proposed algorithmic extension en-
ables improved ways of standard FS algorithms’ operation,
e.g., taking into account feature acquisition cost. We show
just one of possible applications of the proposed mechanism
on a series of examples where two sequential FS methods
are modified to put more preference on smaller subsets
in the course of search. Although the main course of
search is aimed at criterion maximization, smaller subsets
are permitted to be eventually selected if their respective
criterion value is negligibly lower than the known maximum.
The examples show that this mechanism is well capable of
improving classification accuracy on independent data.
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